On the Compressive Power of Deep Rectifier Networks for High Resolution Representation of Class Boundaries

نویسندگان

  • Senjian An
  • Mohammed Bennamoun
  • Farid Boussaïd
چکیده

This paper provides a theoretical justification of the superior classification performance of deep rectifier networks over shallow rectifier networks from the geometrical perspective of piecewise linear (PWL) classifier boundaries. We show that, for a given threshold on the approximation error, the required number of boundary facets to approximate a general smooth boundary grows exponentially with the dimension of the data, and thus the number of boundary facets, referred to as boundary resolution, of a PWL classifier is an important quality measure that can be used to estimate a lower bound on the classification errors. However, learning naively an exponentially large number of boundary facets requires the determination of an exponentially large number of parameters and also requires an exponentially large number of training patterns. To overcome this issue of “curse of dimensionality”, compressive representations of high resolution classifier boundaries are required. To show the superior compressive power of deep rectifier networks over shallow rectifier networks, we prove that the maximum boundary resolution of a single hidden layer rectifier network classifier grows exponentially with the number of units when this number is smaller than the dimension of the patterns. When the number of units is larger than the dimension of the patterns, the growth rate is reduced to a polynomial order. Consequently, the capacity of generating a high resolution boundary will increase if the same large number of units are arranged in multiple layers instead of a single hidden layer. Taking high dimensional spherical boundaries as examples, we show how deep rectifier networks can utilize geometric symmetries to approximate a boundary with the same accuracy but with a significantly fewer number of parameters than single hidden layer nets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Evaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution

Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Improving Petrophysical Interpretation of Conventional Log ‎by Determination of Real Bed Boundaries

Proper determination of bed boundaries in layered reservoirs is vital ‎for accurate petrophysical interpretation of conventional logs. In the ‎wellbore, logs continuously measure physical properties of reservoir ‎while the properties change stepwise. This continuous representation ‎of logs may lead to ignorance of some high potential reservoir zones. ‎The main reasons for continuous nature of l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.07244  شماره 

صفحات  -

تاریخ انتشار 2017